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Who am I

• Former Producer at Glu and other companies, mostly with the free-
to-play model.

• Former Economy Designer at Gameloft and other companies, worked 
on several mobile free-to-play titles.

• Now Data Analyst at Bethesda.
• Disclaimer: no data in this presentation is related to any Bethesda game. 
• Demonstrations of data are always picked from external sources.
• Applicability of each model is from my past experiences and lessons.



: What is Machine Learning.
• "Field of study that gives computers the ability to learn without being 

explicity programmed." - Arthur Samuel
• How does a baby learns?

*source: Pexels
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Observes Does Experiments

Gets Feedback



• Think about how many times a child needs to see images of a cat and 
cats in real life so he finally learns what the concept of a "cat" is.
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• Think about how many times a child needs to see images of a cat and 
cats in real life so he finally learns what the concept of a "cat" is.

Data!
In only 2 years, literally 
thousands if not millions of 
moments their minds take 
"snapshots" of what a cat is.



• Think about how many times a child needs to see images of a cat and 
cats in real life so he finally learns what the concept of a "cat" is.

Experiments

Gets Feedback

Learns



• Machine Learning are mathematical and statistical algorithms that 
learn like babies:

• Absorb LOTs of data.
• Do Experiments (iterations) to improve tuning.
• Get Feedback from humans (or other algorithms).
• Improves.

Data

Iterates on 
Data 

Gets Feedback
(Tuning of C)

Improves
Tuning.



So...

*source: Pexels



: Req 1 - You need data.
• Machine Learning = Statistical Learning. 
• Needs data of enough volume to be 

statistically robust for the algorithms.
• Hopefully enough to split your data in 3 

subsets (70%/15%/15%) and still have > 
3,000 data points (table rows) in the smaller 
ones.

• Those are sets to, respectively, train, test and 
validate the models.

• Anything below 50 users is unusable by any 
algorithm. 

• So no, you can’t use ML in data from playtests 
and control groups.

*source: Tarang Shah

*source: Alice Zheng



: Req 2 - You need quality data.
• Your models will only be as good as the source of your data. Garbage 

in, garbage out.
• Design your trackers thoughtfully. Prioritize them.

• Implementing analytics can be an "infinite" task...

• Test them. 
• Iterate with programmers to test and analyse precise conditions in which each 

tracker os being fired.
• Sometimes programmers will make assumptions that may invalidate the 

validity of an entire event until the next app update.

• Use quality database services to receive and store your data. 
• Consider scalable cloud services with features designed to receive data 

streaming from thousands of clients.



: Req 3 - You need to engineer your data.
• Your data must be wrangled so that ML algorithms can understand: a big table 

with one data point per row, and one column per feature the ML model should 
use to learn. We call this columns "features" of the data.

(In fact, 80% of all time of machine learning pratitioners is usually just cleaning 
and wrangling data to feed their baby models!)

Each column is a 
"feature" / 

"dimension"

*source: Pexels



: Goal - You are looking for generalizations.
• The best ML models are the ones that are 

capable of generalizing. They are neither 
trying ot be 100% precise nor too broad. 

• Bias vs. Variance tradeoff
• Overfitting vs. Underfitting

• When properly tuned, they provide 
generalizations that are more robust statistics 
than Averages.

• KPIs based on Averages are common and easy to 
explain 

• But dangerous simplifications.
• "When Bill Gates enter in a bar..."



• Finally, understand models of statistical learning that make good 
generalizations will eventually misclassify very particular cases that not 
represented enough in the training data. 

• Tell your manager "That's OK!"

"Machine Learning models are 
statistically impressive, but individually 
unreliable." 

- John Launchbury, the Director of 
DARPA's Information Innovation Office

*source: DARPA



• Finally, models that make good generalizations will eventually 
misclassify or misshandle particular cases - or outliers.

• Tell your manager "That's OK!"

"Machine Learning models are 
statistically impressive, but individually 
unreliable." 
- John Launchbury, the Director of 
DARPA's Information Innovation Office



: Regression
• Algorithms that try to predict a value based on a variable + historical data. The 

most common ones fit a line across 2 or more dimensions.
• Examples: project salary based on years of experience, and sales based on 

YouTube views.

*source: Björn Hartmann *source: Alboukadel Kassambara



• "Least Squares" regression is the simplest one, but only effective 
when the data is relatively linear. 

• Non-linear regressions are possible if your data "looks" like it could be 
fit in another function, such as polynomial or logarithmical.

*source: Björn Hartmann



• But generally, gameplay data is 
much more messy and it's 
usually more efficient to regress 
on non-parametric models.

• The game, metagame and player 
habits are changing over time 
and "disturbing" the curves.

• More efficient models to help 
game design are non-parametric, 
such as Isotonic and Gaussian 
Kernel regressions.

*source: Wikipedia

*source: Chris McCormick



• It's also useful to project variability bounds, or confidence intervals, in 
the predictions. So the expected variance is well known by designers.

• Example: "We expect players that play 10 hours to have earned 2554 
bucks, varying between 4125 and 2145."

*source: Wikipedia*source: MatLab



• Things get "interesting" when using multiple dimensions.
• But if too many dimensions begin to be used, the curse of 

dimensionality kicks in and it's probably better to use Deep Learning.

*source: MatLab

Linear: Gaussian Kernel:

*source: MatLab



• Beware: parametric Regression models may not work well for 
"extrapolation into the future", because the future will hardly follow a 
function trained in the past. 

• Regression models should be used within known boundaries of your 
data, or just slightly over it.

*source: Kenneth A. Kriz*source: Cross Validated



How Regression help Game Designers

Projection of expected values across 
many different aspects of the player 
progression:

• Resource accumulation per game 
milestone.

• Time to reach game milestones.
• Time to accumulate high level items.
• Resource inflation over time.
• Rates of Tutorial completion.
• Participation on events / game 

modes.
• Combat efficiency over time and 

over player levels (for example, on 
win ratios)

Also, Regression models could replace analysis based on averages, as it is 
more robust against outliers and can use optimization techniques like 
Gradient Descent. Example with a very simple model (least squares):



: Classification

• The goal of these models is to classify a 
data point into categories (or labels). 

• The models work by discovering 
criteria that can somehow separate 
data points in a multi-dimensional 
space.

• Ideally, the best models are capable of 
creating complex boundaries to 
differentiate between several classes.

*source: Fimarkets

*source: Hyunjik Kim



• Classification models are a very useful bunch, wildly used in the most 
famous applications of Machine Learning across many industries.

• A few examples:

Recommendation 
systems.

Processing and recognition 
of objects in photos.

*source: Netflix

*source: Adrian Rosebrock
*source: Pallavi Tiwari

Image-based medical 
diagnosis.



• Depending on the classification algorithm, boundaries between 
classes can be of straight lines (hyperplanes, actually), smooth curves, 
rules-based lines, uncertain classification in lower probability zones, 
and anything in-between.

*source: Scikit-Learn



• Some of the most used Classification models used:

Gaussian Naive Bayes
Learns the probability a data point 
belongs to a classification based on the 
Bayes theorem. 

Very fast to train and experiment with. 
One of the models it's worth to try first. 
Also, may work well on relatively less 
training data.

Logistic Regression
Learns from data with features that is 
assumed to be highly correlated an linearly 
separable. Works best for few categories.

Very fast to train and experiment with, also 
another model worth to try. Can also learn 
"online" (when a model keeps evolving with 
more data)

Support Vector Machines
Learns by trying to find boundaries that 
maximize the spatial distance from data 
points in the categories.

Slow to train and should only be used when 
you don't have too much data (less than 100 
k data points), but can yield great results in 
medium-sized datasets.

*source: Ganapathi Pulipaka *source: mlxtend *source: Karim O. Elish



• One of the best and most flexible algorithms are Decision Tree-based 
models. In particular, Random Forests and "Boosted Forests".

*source: Mayur Kulkarni

Decision Tree
Learns by finding rules in the data that 
stablish a if->else branching tree that 
ultimately classifies a data point based 
on its features. 

Very flexible to accept any distribution of 
data, but very vulnerable to overfitting.

Random Forests
Trains multiple decision trees and use 
them in an ensemble that together 
"vote" to decide the classification of the 
data.

Excellent model, because can very well 
"just work" out of the box without the 
need of much tuning.

*source: William Koehrsen

XGBoost / AdaBoost / MART
The ensemble of decision trees uses 
boosting techniques to combine their 
results based on weights derived from 
their accuracy.

Probably the best non-Deep-Learning 
classifiers to use. Can be hard to tune.

*source: Manish Pathak



Useful to predict how a player will behave in the future based 
on behavior of other players in the past. 

How Classification help Game Designers

Level 3

Previous 
Users

Level 4 Level 5

New User

Buys a new 
Sedan car

Upgrades the
car with Nitro

Wins the last race 
in the first try.

Buys a new 
Sedan car

New "High 
Achiever" 

Classifier trained 
from the past of 

this outcome

Predicted as a future 
High Achiever

Once the classifier is trained and tuned, 
it outputs a list of the most relevant 
and correlated mechanics in the game 
that designers can adjust.

Something like:

New User
Upgrades with 

new Tires
Predicted as 

"Average Achiever"

FindsFinds



With the proper backend implemented, the classifier can be 
implemented as a real-time system to deliver custom content like 
gifts and in-game events.

How Classification help Live Ops

Certain types of classifications 
are particularly useful:

• Players who will churn.
• Players who will convert.
• Players who will participate 

in an upcoming event.
• Players who will play a game 

mode unlocked later in the 
game.

• Players who will engage in 
social modes like Guilds.

Special Offer of a new Car

Unique Race now available

Share Free Fuel for 1 Day



• The goal of this class of algorithms is to 
autonomously find clusters of data points 
based on its spatial proximity or feature 
similarity.

• Because they can "discover clusters by 
their own", they are categorized as 
Unsupervised Learning.

• In data science, we use clustering to gain 
valuable insights by seeing what groups 
the data points fall into. Designers can 
also benefit from it.

: Clustering

*source: Inna Kaler

*source: Peter Jeffcock



• The ability to discover clusters algorithmically eliminate the reliance on biased 
human judgement that may not be supported by the distribution of the data.

• Say we want to classify customers or an e-commerce site by two parameters - 
amount spent in the site vs. personal income (provided they gave this info).

*source: Sowmya Vivek

...but...



• Different algorithms employ different strategies to determine what is 
a "close point" in multidimensional space. The problem is harder than 
it seems in real-world messy datasets.

*source: Scikit-Learn



• Here's a few visualizations of how commonly used algorithms 
calculate clusters:

*source: Mubaris NK

k-Means
The best know and most used. Fast and 
scalable. Creates clusters with distance 
of data points, moving the centroid 
until convergence. Needs to be told the 
number of clusters - which could be 
too arbitrary, and data scientists often 
use another calculation (the "elbow 
rule") for this.

DBSCAN
Density-based search of clusters, 
works by finding points that are close 
to a random non-visited starting 
point, and continuing to include 
other close points. Works great but is 
resource-intensive and vulnerable to 
clusters of different densities.

*source: George Seif

*source: George Seif

Gaussian Mixtures
Assumes clusters follow a normal 
(gaussian) distribution in the multi-
dimensional space, and from this 
assumption find clusters and adapt 
the boundaries of such distribution. 
generates "soft clusters", where a 
data point has mixed membership 
(probabilities of belonging).



• Clustering is useful to find groups of players 
from their behavior in the game. Frameworks 
of psychology like the Bartle Types are useful 
for conception of features, but once you 
launch data science can provide you how your 
players really behave.

How Clustering help Game Designers

*source: Bart Stewart

Development

Updates

*source: Anders Drachen, Rafet Sifa, Christian Bauckhage and Christian Thurau

Study made on 
the MMO game 

Tera.



: Dimensionality Reduction

• A group of algorithms that can 
decompose multiple dimensions of data 
into fewer ones. 

• The decomposed dimensions represent  
"parts" of data that were highly aligned 
with each other. 

• The mathematical description of these 
new dimensions may seem clunky, but 
are interpretable by a data analyst.

*source: BigSnarf blog



• The most used method is the Principal Component Analysis (PCA). 
• It works by finding new coordinate systems in the data that can potentially 

describe latent features, and then projecting 2 or more dimensions into a single 
one, losing information in the process. 

• For example:

*source: Udacity

Result in 1 
dimension.

We want to find 
this latent feature 

hidden in 2 
dimensions.



• Also great to visualize multi-dimensional spaces in 
ways anyone can understand.

• Example: here's an analysis made by Jose A. Dianes 
on cases of Tuberculosis across 2 decades and all 
countries:

Compressing all years to 2 
Principal Components

Plotting and 
Clustering

Analysis of what the 
clusters represent.

https://github.com/jadianes/data-science-your-way/tree/master/03-dimensionality-reduction-and-clustering


z

• Like in the example before, where 
the clusters captured the trend over 
time for several countries at once, 
PCAs can be used to find latent 
information and trends in your data

• Here's an example decomposing 34 
stats of soccer players in 2018 into 
only 2 dimensions, made by Kan 
Nishida

How PCAs help 
Game Designers

Insights

These axes project 
the original stats in 

this new space.

1. The dimension PC2 is 
strongly associated to stats that 
help Defense, like Marking, 
Interception, Strength, 
Aggregation.

2. Mid Fields cluster more 
towards:
• Short Pass
• Stamina
• Crossing
• Free Kick Accuracy
• Vision
• Shot Power

3. Forward players share much 
of the same skill space in PC1 
with Mid Fielders, but cluster 
more towards:
• Agility
• Acceleration
• Spring Speed
• Finishing.

https://blog.exploratory.io/an-introduction-to-principal-component-analysis-pca-with-2018-world-soccer-players-data-810d84a14eab


... and applying the 
model to compare 

only Brazil and Japan.



... and applying the 
model to compare 

only Brazil and Japan.

Neymar



... and applying the 
model to compare 

only Brazil and Japan.

Neymar



: Latent Dirichlet Allocation

• A semi-supervised learning 
algorithm, used to predict 
topics and classify data points 
based on the repetition of a 
certain content across those 
data points.

• It's a "soft" classification 
method, in the sense that a 
single document can belong 
to 2 or more topic.

• Hard to train and tune, but 
very effective.

*source: BigSnarf blog



• LDA Topic Modelling is used to discover broader topics of documents of any type, 
(include scientific data, like genetic measurements) and relationships between 
such topics.

• But was also used for content recommendation and analysis of overlapping 
communities in social networks.

*source: Alexis Perrier

LDA on Twitter messages 

*source: Debbie Liske



• By revealing and structuring metagame patterns and strategies that players are using.
• Here's an analysis from Hlynur Davíð Hlynsson using LDA to discover and relate deck 

strategies in Magic: The Gathering.

How LDA Topic Modelling help Game Designers

The model discover 
Archetypes of decks and 

the probability that a 
certain card will be 

present in each deck 
Archetype.

Since LDA is a generative 
model, we can also make 

this model create new 
decks!

https://hackernoon.com/finding-magic-the-gathering-archetypes-with-latent-dirichlet-allocation-729112d324a6


: Reinforcement Learning
• The one type of Machine Learning that 

doesn't require loads of data, but... doesn't 
do the same things either. :)

• The goal of Reinforcement models is to 
learn how to execute tasks from scratch, 
with minimal human intervention.

• It's a model based on Markov Decision 
Processes that learns on trial-and-error 
across thousands (millions?) of attempts, 
being guided by reward functions across 
many tries.

*source: Shweta Bhatt

*source: David Silver



• Is famously known for agents that learn to 
play games by themselves. (A team of 
Mnih et al. 2015 trained agents in several 
different Atari games, frequently 
achieving super-human performance.)

• But is also used in other industries to 
manage resources in computer clusters, 
control traffic lights, robotics and even 
chemistry.



• A competition using Doom has pit together different reinforcement 
learning models from competitors in a bloody free-for-all!



• Current science of OpenAI labs on Deep Reinforcement Learning are 
finding ways around very hard AI problems around certain game 
mechanics: long-term planning, curiosity, team play.

• Finding an architecture that can learn to play anything in the near future is 
becoming less and less an impossible dream.



Reinforcement learning models open a world of possibilities in 
conjunction with Deep Neural Networks. Since they require very 
specialized engineering and science, at the moment we see few 
systems like that in game development,  but here's some future 
possibilities:

• Enemy AI that is trained instead of coded. 
• Testing bots that play the engine 24/7 and help QA.
• Agents that play the metagame and test long-term 

progression design and economy.
• Generative Adversarial Networks that help balance the game 

economy and progression.
• Narrative agents without pre-scripted dialogues, that react to 

the player's actions and choices more organically.
• Matchmaking for PvP games.

How Reinforcement Learning
help Game Designers

*source: Unity

*source: Unity



: Deep Learning

• A class of ML models composed of 
stacked Neural Networks. 

• Very flexible and very powerful, and 
continue to improve over time as the 
amount of data increases. 

• But costly: hard to tune, time-consuming, 
require GPUs, take a lot of processing 
time to train. 

• Also, nearly impossible to know why and 
how a deep learning model makes 
decisions.

*source: Andew Ng

*source: Favio Vázquez



• First, lets understand what a Neural Network does. It's an architecture 
(usually used as a Classifier) that combines the separation made by 
various "neurons".

A "neuron" (Perceptron)

Training 
Data

*source: Udacity

Trained to 
distinguish the blue  

category with a 
linear function.

Receives 
coordinates of a 
new data point.

Outputs the 
probability that 
point belongs to 

the blue category.

*source: Udacity



• However, in the real world, very few datasets 
are separable by one line. So then, like in the 
example below, we create a network of 2 
neurons to create a more complex boundary.

*source: Udacity

*source: Udacity

Neuron 1 thinks the 
point has a 70% 

probability of being 
blue.

Neuron 2 thinks the 
point has a 80% 

probability of being 
blue.

Sums the output of 
the two neurons. Math using a 

Sigmoid function to 
derive a combined 
probability of 82%.

A Neural Network



• Finally, for really complicated classifications, we can stack more 
layers of neurons that together create a very sophisticated classifier. 
The non-linear model of a layer is further expanded into more 
complex non-linear boundaries. That's a deep neural network.

*source: Udacity





• The ability to stack more layers and experiment with 
different architectures when connecting neurons is 
what makes deep neural networks so flexible. And it 
can become really sophisticated.

• For example, Google's Inception models:

*source: Google

*source: MathWorks

*source:William Koehrsen



• This demonstrates how stacking layers in a deep neural network results in 
deeper neurons learning higher and higher-level abstractions.

*source: NamHyuk Ahn



• My own experiments with Microsoft's ResNet 50

*source of images: ImageNet



Really?...



How Deep Learning help Game Designers

Like for everyone else: essentially, Deep Neural Networks can do anything that previous algorithms 
do but in a more robust, scalable and accurate way. 

However, since they are still more costly to develop and deploy, we will have some years of 
transition. (Also because the field of Deep Learning still needs to mature more in "models ready to 
go" for specific business needs, like what is happening on image recognition.)

Moreover, Deep Learning models are also potentially much better at content generation and 
prediction tasks. Some functions that are hard to develop but will eventually be faster to develop 
and train, and help game designers immensely:

• Predict the next moves and decisions of each user.
• Predict resource inflation.
• Procedural content creation, like level design.
• Balance game economy.
• Train NPCs that react more naturally.



: Deciding what to use



Thank you!
Questions?
@texpine

Start here!
http://www.r2d3.us/

https://twitter.com/texpine
http://www.r2d3.us/


: Appendix
• Icon Game by Orin zuu from the Noun Project

• Icon Lighthouse by Nikita Kozin from the Noun Project

• Icon User by Gagana from the Noun Project

• Icon Car on Sale from all-free-download.com / BSGStudio

• Icon Flag from all-free-download.com / Vector Graphics

• Icon Flag from all-free-download.com / BSGStudio

• All materials sourced on Udacity are subject of Creative Commons Attribution-NonCommercial- NoDerivs 3.0 License, located at 
http://creativecommons.org/licenses/by-nc-nd/4.0  

http://creativecommons.org/licenses/by-nc-nd/4.0

