
How Machine Learning Can
Help Improve Your Game Design

Tiago Tex Pine
@texpine

2018

https://twitter.com/texpine

Who am I

• Former Producer at Glu and other companies, mostly with the free-
to-play model.

• Former Economy Designer at Gameloft and other companies, worked
on several mobile free-to-play titles.

• Now Data Analyst at Bethesda.
• Disclaimer: no data in this presentation is related to any Bethesda game.
• Demonstrations of data are always picked from external sources.
• Applicability of each model is from my past experiences and lessons.

: What is Machine Learning.
• "Field of study that gives computers the ability to learn without being

explicity programmed." - Arthur Samuel
• How does a baby learns?

*source: Pexels

: What is Machine Learning.
• "Field of study that gives computers the ability to learn without being

explicity programmed." - Arthur Samuel
• How does a baby learns?

Observes

*source: Pexels

: What is Machine Learning.
• "Field of study that gives computers the ability to learn without being

explicity programmed." - Arthur Samuel
• How does a baby learns?

*source: Pexels

Observes Experiments

: What is Machine Learning.
• "Field of study that gives computers the ability to learn without being

explicity programmed." - Arthur Samuel
• How does a baby learns?

*source: Pexels

Observes Does Experiments

Gets Feedback

• Think about how many times a child needs to see images of a cat and
cats in real life so he finally learns what the concept of a "cat" is.

*source: Pexels

• Think about how many times a child needs to see images of a cat and
cats in real life so he finally learns what the concept of a "cat" is.

Data!
In only 2 years, literally
thousands if not millions of
moments their minds take
"snapshots" of what a cat is.

• Think about how many times a child needs to see images of a cat and
cats in real life so he finally learns what the concept of a "cat" is.

Experiments

Gets Feedback

Learns

• Machine Learning are mathematical and statistical algorithms that
learn like babies:

• Absorb LOTs of data.
• Do Experiments (iterations) to improve tuning.
• Get Feedback from humans (or other algorithms).
• Improves.

Data

Iterates on
Data

Gets Feedback
(Tuning of C)

Improves
Tuning.

So...

*source: Pexels

: Req 1 - You need data.
• Machine Learning = Statistical Learning.
• Needs data of enough volume to be

statistically robust for the algorithms.
• Hopefully enough to split your data in 3

subsets (70%/15%/15%) and still have >
3,000 data points (table rows) in the smaller
ones.

• Those are sets to, respectively, train, test and
validate the models.

• Anything below 50 users is unusable by any
algorithm.

• So no, you can’t use ML in data from playtests
and control groups.

*source: Tarang Shah

*source: Alice Zheng

: Req 2 - You need quality data.
• Your models will only be as good as the source of your data. Garbage

in, garbage out.
• Design your trackers thoughtfully. Prioritize them.

• Implementing analytics can be an "infinite" task...

• Test them.
• Iterate with programmers to test and analyse precise conditions in which each

tracker os being fired.
• Sometimes programmers will make assumptions that may invalidate the

validity of an entire event until the next app update.

• Use quality database services to receive and store your data.
• Consider scalable cloud services with features designed to receive data

streaming from thousands of clients.

: Req 3 - You need to engineer your data.
• Your data must be wrangled so that ML algorithms can understand: a big table

with one data point per row, and one column per feature the ML model should
use to learn. We call this columns "features" of the data.

(In fact, 80% of all time of machine learning pratitioners is usually just cleaning
and wrangling data to feed their baby models!)

Each column is a
"feature" /

"dimension"

*source: Pexels

: Goal - You are looking for generalizations.
• The best ML models are the ones that are

capable of generalizing. They are neither
trying ot be 100% precise nor too broad.

• Bias vs. Variance tradeoff
• Overfitting vs. Underfitting

• When properly tuned, they provide
generalizations that are more robust statistics
than Averages.

• KPIs based on Averages are common and easy to
explain

• But dangerous simplifications.
• "When Bill Gates enter in a bar..."

• Finally, understand models of statistical learning that make good
generalizations will eventually misclassify very particular cases that not
represented enough in the training data.

• Tell your manager "That's OK!"

"Machine Learning models are
statistically impressive, but individually
unreliable."

- John Launchbury, the Director of
DARPA's Information Innovation Office

*source: DARPA

• Finally, models that make good generalizations will eventually
misclassify or misshandle particular cases - or outliers.

• Tell your manager "That's OK!"

"Machine Learning models are
statistically impressive, but individually
unreliable."
- John Launchbury, the Director of
DARPA's Information Innovation Office

: Regression
• Algorithms that try to predict a value based on a variable + historical data. The

most common ones fit a line across 2 or more dimensions.
• Examples: project salary based on years of experience, and sales based on

YouTube views.

*source: Björn Hartmann *source: Alboukadel Kassambara

• "Least Squares" regression is the simplest one, but only effective
when the data is relatively linear.

• Non-linear regressions are possible if your data "looks" like it could be
fit in another function, such as polynomial or logarithmical.

*source: Björn Hartmann

• But generally, gameplay data is
much more messy and it's
usually more efficient to regress
on non-parametric models.

• The game, metagame and player
habits are changing over time
and "disturbing" the curves.

• More efficient models to help
game design are non-parametric,
such as Isotonic and Gaussian
Kernel regressions.

*source: Wikipedia

*source: Chris McCormick

• It's also useful to project variability bounds, or confidence intervals, in
the predictions. So the expected variance is well known by designers.

• Example: "We expect players that play 10 hours to have earned 2554
bucks, varying between 4125 and 2145."

*source: Wikipedia*source: MatLab

• Things get "interesting" when using multiple dimensions.
• But if too many dimensions begin to be used, the curse of

dimensionality kicks in and it's probably better to use Deep Learning.

*source: MatLab

Linear: Gaussian Kernel:

*source: MatLab

• Beware: parametric Regression models may not work well for
"extrapolation into the future", because the future will hardly follow a
function trained in the past.

• Regression models should be used within known boundaries of your
data, or just slightly over it.

*source: Kenneth A. Kriz*source: Cross Validated

How Regression help Game Designers

Projection of expected values across
many different aspects of the player
progression:

• Resource accumulation per game
milestone.

• Time to reach game milestones.
• Time to accumulate high level items.
• Resource inflation over time.
• Rates of Tutorial completion.
• Participation on events / game

modes.
• Combat efficiency over time and

over player levels (for example, on
win ratios)

Also, Regression models could replace analysis based on averages, as it is
more robust against outliers and can use optimization techniques like
Gradient Descent. Example with a very simple model (least squares):

: Classification

• The goal of these models is to classify a
data point into categories (or labels).

• The models work by discovering
criteria that can somehow separate
data points in a multi-dimensional
space.

• Ideally, the best models are capable of
creating complex boundaries to
differentiate between several classes.

*source: Fimarkets

*source: Hyunjik Kim

• Classification models are a very useful bunch, wildly used in the most
famous applications of Machine Learning across many industries.

• A few examples:

Recommendation
systems.

Processing and recognition
of objects in photos.

*source: Netflix

*source: Adrian Rosebrock
*source: Pallavi Tiwari

Image-based medical
diagnosis.

• Depending on the classification algorithm, boundaries between
classes can be of straight lines (hyperplanes, actually), smooth curves,
rules-based lines, uncertain classification in lower probability zones,
and anything in-between.

*source: Scikit-Learn

• Some of the most used Classification models used:

Gaussian Naive Bayes
Learns the probability a data point
belongs to a classification based on the
Bayes theorem.

Very fast to train and experiment with.
One of the models it's worth to try first.
Also, may work well on relatively less
training data.

Logistic Regression
Learns from data with features that is
assumed to be highly correlated an linearly
separable. Works best for few categories.

Very fast to train and experiment with, also
another model worth to try. Can also learn
"online" (when a model keeps evolving with
more data)

Support Vector Machines
Learns by trying to find boundaries that
maximize the spatial distance from data
points in the categories.

Slow to train and should only be used when
you don't have too much data (less than 100
k data points), but can yield great results in
medium-sized datasets.

*source: Ganapathi Pulipaka *source: mlxtend *source: Karim O. Elish

• One of the best and most flexible algorithms are Decision Tree-based
models. In particular, Random Forests and "Boosted Forests".

*source: Mayur Kulkarni

Decision Tree
Learns by finding rules in the data that
stablish a if->else branching tree that
ultimately classifies a data point based
on its features.

Very flexible to accept any distribution of
data, but very vulnerable to overfitting.

Random Forests
Trains multiple decision trees and use
them in an ensemble that together
"vote" to decide the classification of the
data.

Excellent model, because can very well
"just work" out of the box without the
need of much tuning.

*source: William Koehrsen

XGBoost / AdaBoost / MART
The ensemble of decision trees uses
boosting techniques to combine their
results based on weights derived from
their accuracy.

Probably the best non-Deep-Learning
classifiers to use. Can be hard to tune.

*source: Manish Pathak

Useful to predict how a player will behave in the future based
on behavior of other players in the past.

How Classification help Game Designers

Level 3

Previous
Users

Level 4 Level 5

New User

Buys a new
Sedan car

Upgrades the
car with Nitro

Wins the last race
in the first try.

Buys a new
Sedan car

New "High
Achiever"

Classifier trained
from the past of

this outcome

Predicted as a future
High Achiever

Once the classifier is trained and tuned,
it outputs a list of the most relevant
and correlated mechanics in the game
that designers can adjust.

Something like:

New User
Upgrades with

new Tires
Predicted as

"Average Achiever"

FindsFinds

With the proper backend implemented, the classifier can be
implemented as a real-time system to deliver custom content like
gifts and in-game events.

How Classification help Live Ops

Certain types of classifications
are particularly useful:

• Players who will churn.
• Players who will convert.
• Players who will participate

in an upcoming event.
• Players who will play a game

mode unlocked later in the
game.

• Players who will engage in
social modes like Guilds.

Special Offer of a new Car

Unique Race now available

Share Free Fuel for 1 Day

• The goal of this class of algorithms is to
autonomously find clusters of data points
based on its spatial proximity or feature
similarity.

• Because they can "discover clusters by
their own", they are categorized as
Unsupervised Learning.

• In data science, we use clustering to gain
valuable insights by seeing what groups
the data points fall into. Designers can
also benefit from it.

: Clustering

*source: Inna Kaler

*source: Peter Jeffcock

• The ability to discover clusters algorithmically eliminate the reliance on biased
human judgement that may not be supported by the distribution of the data.

• Say we want to classify customers or an e-commerce site by two parameters -
amount spent in the site vs. personal income (provided they gave this info).

*source: Sowmya Vivek

...but...

• Different algorithms employ different strategies to determine what is
a "close point" in multidimensional space. The problem is harder than
it seems in real-world messy datasets.

*source: Scikit-Learn

• Here's a few visualizations of how commonly used algorithms
calculate clusters:

*source: Mubaris NK

k-Means
The best know and most used. Fast and
scalable. Creates clusters with distance
of data points, moving the centroid
until convergence. Needs to be told the
number of clusters - which could be
too arbitrary, and data scientists often
use another calculation (the "elbow
rule") for this.

DBSCAN
Density-based search of clusters,
works by finding points that are close
to a random non-visited starting
point, and continuing to include
other close points. Works great but is
resource-intensive and vulnerable to
clusters of different densities.

*source: George Seif

*source: George Seif

Gaussian Mixtures
Assumes clusters follow a normal
(gaussian) distribution in the multi-
dimensional space, and from this
assumption find clusters and adapt
the boundaries of such distribution.
generates "soft clusters", where a
data point has mixed membership
(probabilities of belonging).

• Clustering is useful to find groups of players
from their behavior in the game. Frameworks
of psychology like the Bartle Types are useful
for conception of features, but once you
launch data science can provide you how your
players really behave.

How Clustering help Game Designers

*source: Bart Stewart

Development

Updates

*source: Anders Drachen, Rafet Sifa, Christian Bauckhage and Christian Thurau

Study made on
the MMO game

Tera.

: Dimensionality Reduction

• A group of algorithms that can
decompose multiple dimensions of data
into fewer ones.

• The decomposed dimensions represent
"parts" of data that were highly aligned
with each other.

• The mathematical description of these
new dimensions may seem clunky, but
are interpretable by a data analyst.

*source: BigSnarf blog

• The most used method is the Principal Component Analysis (PCA).
• It works by finding new coordinate systems in the data that can potentially

describe latent features, and then projecting 2 or more dimensions into a single
one, losing information in the process.

• For example:

*source: Udacity

Result in 1
dimension.

We want to find
this latent feature

hidden in 2
dimensions.

• Also great to visualize multi-dimensional spaces in
ways anyone can understand.

• Example: here's an analysis made by Jose A. Dianes
on cases of Tuberculosis across 2 decades and all
countries:

Compressing all years to 2
Principal Components

Plotting and
Clustering

Analysis of what the
clusters represent.

https://github.com/jadianes/data-science-your-way/tree/master/03-dimensionality-reduction-and-clustering

z

• Like in the example before, where
the clusters captured the trend over
time for several countries at once,
PCAs can be used to find latent
information and trends in your data

• Here's an example decomposing 34
stats of soccer players in 2018 into
only 2 dimensions, made by Kan
Nishida

How PCAs help
Game Designers

Insights

These axes project
the original stats in

this new space.

1. The dimension PC2 is
strongly associated to stats that
help Defense, like Marking,
Interception, Strength,
Aggregation.

2. Mid Fields cluster more
towards:
• Short Pass
• Stamina
• Crossing
• Free Kick Accuracy
• Vision
• Shot Power

3. Forward players share much
of the same skill space in PC1
with Mid Fielders, but cluster
more towards:
• Agility
• Acceleration
• Spring Speed
• Finishing.

https://blog.exploratory.io/an-introduction-to-principal-component-analysis-pca-with-2018-world-soccer-players-data-810d84a14eab

... and applying the
model to compare

only Brazil and Japan.

... and applying the
model to compare

only Brazil and Japan.

Neymar

... and applying the
model to compare

only Brazil and Japan.

Neymar

: Latent Dirichlet Allocation

• A semi-supervised learning
algorithm, used to predict
topics and classify data points
based on the repetition of a
certain content across those
data points.

• It's a "soft" classification
method, in the sense that a
single document can belong
to 2 or more topic.

• Hard to train and tune, but
very effective.

*source: BigSnarf blog

• LDA Topic Modelling is used to discover broader topics of documents of any type,
(include scientific data, like genetic measurements) and relationships between
such topics.

• But was also used for content recommendation and analysis of overlapping
communities in social networks.

*source: Alexis Perrier

LDA on Twitter messages

*source: Debbie Liske

• By revealing and structuring metagame patterns and strategies that players are using.
• Here's an analysis from Hlynur Davíð Hlynsson using LDA to discover and relate deck

strategies in Magic: The Gathering.

How LDA Topic Modelling help Game Designers

The model discover
Archetypes of decks and

the probability that a
certain card will be

present in each deck
Archetype.

Since LDA is a generative
model, we can also make

this model create new
decks!

https://hackernoon.com/finding-magic-the-gathering-archetypes-with-latent-dirichlet-allocation-729112d324a6

: Reinforcement Learning
• The one type of Machine Learning that

doesn't require loads of data, but... doesn't
do the same things either. :)

• The goal of Reinforcement models is to
learn how to execute tasks from scratch,
with minimal human intervention.

• It's a model based on Markov Decision
Processes that learns on trial-and-error
across thousands (millions?) of attempts,
being guided by reward functions across
many tries.

*source: Shweta Bhatt

*source: David Silver

• Is famously known for agents that learn to
play games by themselves. (A team of
Mnih et al. 2015 trained agents in several
different Atari games, frequently
achieving super-human performance.)

• But is also used in other industries to
manage resources in computer clusters,
control traffic lights, robotics and even
chemistry.

• A competition using Doom has pit together different reinforcement
learning models from competitors in a bloody free-for-all!

• Current science of OpenAI labs on Deep Reinforcement Learning are
finding ways around very hard AI problems around certain game
mechanics: long-term planning, curiosity, team play.

• Finding an architecture that can learn to play anything in the near future is
becoming less and less an impossible dream.

Reinforcement learning models open a world of possibilities in
conjunction with Deep Neural Networks. Since they require very
specialized engineering and science, at the moment we see few
systems like that in game development, but here's some future
possibilities:

• Enemy AI that is trained instead of coded.
• Testing bots that play the engine 24/7 and help QA.
• Agents that play the metagame and test long-term

progression design and economy.
• Generative Adversarial Networks that help balance the game

economy and progression.
• Narrative agents without pre-scripted dialogues, that react to

the player's actions and choices more organically.
• Matchmaking for PvP games.

How Reinforcement Learning
help Game Designers

*source: Unity

*source: Unity

: Deep Learning

• A class of ML models composed of
stacked Neural Networks.

• Very flexible and very powerful, and
continue to improve over time as the
amount of data increases.

• But costly: hard to tune, time-consuming,
require GPUs, take a lot of processing
time to train.

• Also, nearly impossible to know why and
how a deep learning model makes
decisions.

*source: Andew Ng

*source: Favio Vázquez

• First, lets understand what a Neural Network does. It's an architecture
(usually used as a Classifier) that combines the separation made by
various "neurons".

A "neuron" (Perceptron)

Training
Data

*source: Udacity

Trained to
distinguish the blue

category with a
linear function.

Receives
coordinates of a
new data point.

Outputs the
probability that
point belongs to

the blue category.

*source: Udacity

• However, in the real world, very few datasets
are separable by one line. So then, like in the
example below, we create a network of 2
neurons to create a more complex boundary.

*source: Udacity

*source: Udacity

Neuron 1 thinks the
point has a 70%

probability of being
blue.

Neuron 2 thinks the
point has a 80%

probability of being
blue.

Sums the output of
the two neurons. Math using a

Sigmoid function to
derive a combined
probability of 82%.

A Neural Network

• Finally, for really complicated classifications, we can stack more
layers of neurons that together create a very sophisticated classifier.
The non-linear model of a layer is further expanded into more
complex non-linear boundaries. That's a deep neural network.

*source: Udacity

• The ability to stack more layers and experiment with
different architectures when connecting neurons is
what makes deep neural networks so flexible. And it
can become really sophisticated.

• For example, Google's Inception models:

*source: Google

*source: MathWorks

*source:William Koehrsen

• This demonstrates how stacking layers in a deep neural network results in
deeper neurons learning higher and higher-level abstractions.

*source: NamHyuk Ahn

• My own experiments with Microsoft's ResNet 50

*source of images: ImageNet

Really?...

How Deep Learning help Game Designers

Like for everyone else: essentially, Deep Neural Networks can do anything that previous algorithms
do but in a more robust, scalable and accurate way.

However, since they are still more costly to develop and deploy, we will have some years of
transition. (Also because the field of Deep Learning still needs to mature more in "models ready to
go" for specific business needs, like what is happening on image recognition.)

Moreover, Deep Learning models are also potentially much better at content generation and
prediction tasks. Some functions that are hard to develop but will eventually be faster to develop
and train, and help game designers immensely:

• Predict the next moves and decisions of each user.
• Predict resource inflation.
• Procedural content creation, like level design.
• Balance game economy.
• Train NPCs that react more naturally.

: Deciding what to use

Thank you!
Questions?
@texpine

Start here!
http://www.r2d3.us/

https://twitter.com/texpine
http://www.r2d3.us/

: Appendix
• Icon Game by Orin zuu from the Noun Project

• Icon Lighthouse by Nikita Kozin from the Noun Project

• Icon User by Gagana from the Noun Project

• Icon Car on Sale from all-free-download.com / BSGStudio

• Icon Flag from all-free-download.com / Vector Graphics

• Icon Flag from all-free-download.com / BSGStudio

• All materials sourced on Udacity are subject of Creative Commons Attribution-NonCommercial- NoDerivs 3.0 License, located at
http://creativecommons.org/licenses/by-nc-nd/4.0

http://creativecommons.org/licenses/by-nc-nd/4.0

